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Abstract: A new aigorithm is presented for computing vertices of a simplicial H -/
;i: tnanguiation of the p-dimensional solution manifold of a parametrized equation
n F(x) = 0, where F is a nonlinear mapping from RMto RM, p=n-m>1. An essential part of ‘
o the method is a constructive algorithm for computing moving frames on the manifoid; . ;ﬂ’ \
a that is, of orthonormal bases of the tangent spaces that vary smoothly with their points g

of contact. The triangulation algorithm uses these bases, together with a chord form of
2* the Gauss-Newton process as corrector, to compute the desired vertices. The Jacobian

malrix of the mapping is notrequired at all the vertices but only at the centers of certain
local Triangulation patches™. Several numerical examples show that the method is very

o efficient in computing trianguiations, even around singularities such as (im# points and
e
) bfurcation points. This opens up new posshilities for determining the form and special
. features of such solution mau.foids.
1) This work was supported in part by the National Science Foundation under Grant
DCR-8309926, the Office of Naval Research under contract N-00014-80-C- 9455, and the
\ Air Force Office of Scientific Research under Grant 84-0131
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© 1 Introduction
o
’§;$ Parameter-dependent nonlinear equations
oy
2 Fz,2) =0, (1.1)
=
Involving a state variable z and a parameter vector A, arise in many applications.
& Under natural condtions on F and the relevank spaces the set of solutions (2, A) of
;; (1.1) constitutes a differentiable maniold in the product of the state and parameter
" space, and the dimension of this manifold equals the parameter dimension.
¢ In most practical applications interest centers not so much on computing a few
3 solutions of (1.1), butrather on determining the form and special features of the
§ solution manifold. For instance, £ (1.1) represents an equilbrium problem, then we
151 may wish to determine the bifurcation diagram or the boundaries of the stabiliy regions
‘h onthe manifoid. But, as kturns ouw, all standard computational methods for such an
:;—“ analysis require us to construct a picture of a p-dimensional manifold from information
: ; along one-dimensional paths. In fact, all these methods belong to the family of
- continuation processes for which the dimension of the parameter space always has to e
| ': equal one. Thus, before such a process can be applied, any problem with a targer "
"é parameter dimension must be reduced to some form involying only a scalar valued r
- parameter and, geometrically, such a reduction is equivalent with a restriction to some
:’ path on the solution manifold of the oriqinal equation A continuation method then
:-;E computes a sequence of points along such a path. For example, in structural . .i
e engineering the parameter A often characterizes a vector of load components in which
'_{,C‘:é case it has become customary to fix a linear combination of these components
X
- .
B
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q

specying a particular load drection. The resulting reduced equation then invotves
only the load intensity as a one-dimensional parameter variable and the standard
incremental’ methods generate points alonq this load path.

In general, it 15 not easy to develop a good picture of a p-dimensional manifold from
information afong one-dimensional paths Thus it 15 not surprising that there ts growing
interest in computational methods which generate muki-dimensional arids of solution
points covering an entire segment of the manifold. Up to now the only method for
computing such muli-dimensional grids appears to be that of E.L Allgover and
P H Schmidt (2]. k utilizes a simplicial continuation akgorithm to "Tianqulate”, by means
of p-smplices, a portion of a p-dimensional manifold defined by an equation of the

form (1.1).

Here we present a different method for computing vertices of such a tranquiation of
segments of the p-dimensional solution manifokd of an equation (1.1). An essential
part 15 a constructive algorithm for computing orthonommal moying frames on the
manifold in the sense first considered by E.Cartan; that is, of orthonormai bases of the
fangent manifolds that vary continuously with ther points of contact (seeeq..{17]).
The resuting tnangulation algerthm uses these bases and a predictor-corrector
approach‘ to compute the desired and points. ks has many similarities with the
continuation methods Including a comparable computational complexity In particular,
rhe Jacobizn malrix of the mapping i3 not required at all the points For example, on 3
tvo-dimenzional manfcold the computation of a typcal manqulation pattaro wirt 114

manikes requires only 19 Jacobian decompositions

Afer surmmarizing some baske concepts In Section 2 we introduce the moving frame




algorithm in Section 3 Then Section 4 outlines the general triangulahon method and

Section S presents several numercal exampies. Finally, we end with an outlook on the

utilization of the computed trianquiations for the determination of specific features of
the manifold.
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" Throughouk this article, let L)

® F:S > AM, Sopenin RN, p=nm>1, (2.1) L

s called reqular i the first derivative, DF(x), of F has full rank mand hence maps R" .
g onto RM. We consider the equation .

» <
N L
H Ny
v be a diferentiable mapping of class C7,r> 1, onthe subset S. As usual, a pointx e S S

‘x. oy
')" ."\':-
) Fx)=0 ,x €S, (2.2) R
i ‘:\‘\-,
g and assume that is reguiar solution set N

& =
| 3

g M={xeS; Fx)=0, xrequiar) (2.3) 3

L t‘-:x. :
r::‘: '
is non-emply. k is well-known that M is a p-dimensional C'-manifold in RN without ey
- boundary (see, e.g., [17} or [15]). L
~ ~L'_

The tangent space T M at any point x e M may be identified with the kernel of the
Jacobian DF(x); that is, -

)
RN
- - n. ¢ - \ '._f:-
. TM=ker DF(x)={ue R", DF(x)u=0}. (24) R
The nomal space NoMat x e M is the orthogonal complement of the tangent space ff?.f;f
i~ S
o
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o under the natural Euclidean inner product on R™; that is, )

&
,h..

) N = (TyM! = (ker DFO) = rge DF()" 25) .
- o~ - -
0N Since DF{(x) has maximal rank in some opensubset Sgof S containing M, the ‘J
' mapping -

o -
o i
% xe Sg = DF()'[DFDF)TT1DF(Y) e LAY (26) -
= from S, into the space L(R™ of all linear isomorphisms on RN is of class C™1 on Sy,

Hence, the orthogonal projection N
' fz P:M - LR, P(x) =1, - DF)T [DFDF) T DFx), xeM  (27)

e

' '\

! of RMonko TyM is a mapping of class C™1 on the manifoki M, (here I, denotes the N
:_{‘;T identy on RN, R
e
L
R For the computation we require local coordinate systems on M. Any p-dimensional =
’ subspace T of RN induces a kocal coordinate system of M at any point x € M where .
it

T NM = {0} (28)

:, Infact, £ (2.8) hoids for x = Mthen there extst open neighborhoods Y4 and Y5 of the :
s N
i orgins of T and RN, respectively, as wellas a unique C™1 function w: vy = T4 with -
:33(' w(0) = 0, such that
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0

RO v
™ !

ts




o

[

I 7

ol

i

| MNYo={ye RM: y=x+tew), tevq), (2.9)

. (see,eg.,[9] or [15]). In other words, in the local coordinate system induced by T, the
point y=x+t+wl) of M hasthe coordinatete T.

‘ Apoint x € M where (2.8) holds is a non-singular point with respect to the given

-

o coordinate space T, else we call x a singular point. Clearly, at any point x e M the
tangent space TyM canbe chosen as coordinate space and x is non-sinquiar with
respect to . In most applications, a “natural” parameter space A is given, as indicated
by the form of the equation (1.1), and the orthogonal subspace Z = Al isthe state
space. Then interest centers on determining the singular points with respect to the

i space A. These are the so-calied fokdpoints on M where the tangent space has a

) non-zero intersection with the state space Z and the parameter space A can no longer
re be used as a local coordinate space. These are also the points where, for example, in

' equilibrium problems a change in the stabilty behavior of the physical system under
study may be expected.

- Numerically, the mapping w of (2.9) can be implemented in various ways. A smple

T approach is based on a chord form of the Gauss-Newton method. At the given point

55 X € M we compute the QR-factorization

T R
DF(x) = Q 0 {2.10)
=

of the transposed Jacobian DF(x)T involving the n x n ¢ithogonal matrx Gand mxm
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nonsingular, upper trangular matrix R. Then, starting fromany point y ina sukable
neighborhood of x in x+TyM, we may apply the process

1) Sety®=y,

2)for k=0,1,... until convergence (2.11)
2a)solve RTz=F(y) for z e RP;
2b) compute the next terate yk*1=yk.Q(z,0);

Wih (2.10) this is readily rewritten inthe form

DFOO* 1-9%) + Fy¥)= 0, yX* vk e (kerDF(JL, k=01, ... (2.12)

which shows that yK*1.yK & N\M  Thus we have YK e y+NM forall k>0,
whencethe limtpoint y* - f & exists - is the unique point in the intersection of M and
y+NyM which, in the notation of (2.9), can be writen as yx= x+t+w(l), t=y-x.

The convergence theory of Gauss-Nevton processes is well understood. Earlier
studies of these methods considered applications to least squares problems and
hence assumed that F maps R™ into R™ where n<m. A local convergence resut which
covers our case n>mmay be found in[8, Theorem 4]. Another simple proof for the
method in the form (2.12) also follows along the lines of the convergence proof for
singuiar chord methods given in[14]. These results guarantee the validity of the
following theorem:

Theorem 1. Under the stated assumptions about the mapping F there exists for any

ki b e i
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point x of M a neighborhood Y(x) of x in x+TyM such thatfor any starting pointy in
Y(x) the Gauss-Newton process (2.11) converges to the unique point y* inthe
intersection of Mand y+NyM that has the coordinate t=y-x inthe local coordinate
,' system induced by the tangent space TyM.
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3. A Moying Frame Algorithm

o
PR i

As usual, a vector field of class CS,s <1, on an open subset Mg of our manfold M is

-

.ﬁ'.'x.

a CS function u: Mg = TM from M into the tangent bundie TM such that u(x) e T, M for

RV S S,

allx e Mg. Amoving frame of class CS on Mg is a mapping which associates with
eachx e Mga frame (ie.orderedbasis) {u', ., uUP} of TyMsuchthe functions

P g

ul: Mg = T™, i=1,...p, form p vector fields of class CS onMg. When such a moving
frame exists on M then the sub-manifold Mg is said to be parallelizable. We will X
consider only orthonormal moying frames; that is, frames for which the basis vectors ~
are orthonormal. (For a discussion of these concepls see, e.g., [17]) 2

u .

Clearly, the problem of computing an orthonormal basis of the tangent space T,M of
Mata given pointx € M is equivalent with the construction of an n x p matrix U with
: orthonormal columns for which

DF(x)U =0 (3.1)

There are many techniques for computing such a maltrix. A yeell-known procedure is

b

proyided by the QR-decomposition (2.10). In fact,  the malrix Q is partioned in the form
Q = (Q4, Qp) where Q4 has m columns then we may use U = Q, as the desired basis.
Yarious other techniques for computing U have been proposed. We mention, in

N particular, the methods in{5] and [6] aimed at producing sparse bases U
"-
9 3
An algorithm for constructing a moving frame of class C¥ on some open subset M -
- of M has to generate a basis malrix U = L(x) for each x e My insuch a way that the

.............
A I i I
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3 N
N ): )
i mapping U: Mg = L(RP, RM is of class CS. As T.F.Colemanand D.C. Sorensen (7] -'
have noted, the approach based on the QR-decomposition does not give o
: continuously varying matrices U(x). This observation extends to other algorkhms of a 3
N similar nature; in fact, krelates directly to the corresponding problems of computing ::'-
eigenvectors associated with a mukiple eigenvalue. Three remedies are proposed in :
(7], but they concern only the construction of a limk Ug of a sequence of bases U(x) :«'
when x tends to x,,. 2
For our construction of a moying frame we restrict attention to open subsets Mg of M :
where a given p-dimensional subspace T of R induces a local coordinate system; that -
5, where (2.8) holds for all x of Mg. With a mild abuse of language, let Tgbeapx p
malrix with orthonormal columns which span the coordinate space T. Moreover,
assume that we have picked some method for computing atany pointx of Mg annx p
malrix L(x) with orthonormal columns that span the tangent space T,Mat x. Of course, R
U is not expected to depend continuously on x. For instance, we may use the matrices
produced by the QR-decomposition technique. For any orthogonal p xp malrix Q = L5
QYx) the malrix U(x)Q is another orthonormal basis of T,M and our aim is to construct ;r
maltrices Q(x) such that the “rotated” bases W(x)Q(x) depend continuously on x for all x i?_
in My, %

The nomalization (To)TT, = I Suggests that we choose the orthogonal matrx Q
50 that (U(x)3) TT,, approximates the identlty by, Various norms may be used for this,
an advantageous choice Is the Frobenius nom || A [lg = [ (ATA)]"2 The resutting
optimization problem




<A

X To- b llF = min , subjectto QTQ =1, (3.2)

15 a case of the orthogonal Procustes problem. As discussed in[12], the following
aigorkthm solves (3.2):

(1) Ug = Ux) T,

(2) compute the singuiar yalue decompostion (33)
ATU,B=Z andsave AandB.

(3)Q = ABT,

For our purposes the essential fact is now the content of the following theorem

Theorem 2' Let M, be anopensubsetof M on which the given p-dimensional
subspace Tof RN induces a local coordinate system. For any x € M, let U(x) be an
orthonormal basis matrix of T,M and compute the orthogonal matrix Q = Q(x) of (3.3).
Then the mapping x € My, = U(x)Q(x) € L(AP AN} is of class C™1 on M, and defines
an orthonommal moving frame on M,

Proof Evidently, Ugz = 0 implies that the tangent vector U(x)z € TyM must be
orthogonal to the subspace T of R spanned by the columns of T, and, and herce that
\Nx)2 e By construction of M, this cannot happenfor x € M, uniess 2=0 Inother

words. for x € M, the matrices U, and I arising in (3 3) are non-sinqular. Nowy

U, = AZBT = ABT(BTIB)=OH. H=BTzE.

T
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s

s the polar gecomposkion of U, and t follows that

. H=[(Ug)TUol¥2 = [(To)TUmuU) T, #2

is non-singular, whence

e
L I B

X

Q= (Uo) T [(To) TUU) T 2.

258

Lo

«

Evidently, W(x)U(x)T = P(x) is the orthogonal projection {2.7) from R onto TyM. Thus
e see that

e

¥ U0 = POOT, [(To) TROOT, 12 (34)

s
Pd f.f":_; ’

L
<
-
ta
<
-~
o«
.

and, since P was already shown to be of class C1 on M, the resuk follows.

[
LA A T A A

Ouwr overall moving frame algorithm on M,, now consists of the following three steps:

- (1) Given x e M,,, compute the basis malrix U(x) of TyM;

(2) compute the orthogonal matrix Q by (3.3); (35)

o (2) form the desired basis malrix U(x)Q.

; ¥ the QR-factorization is used in step (1), then the order of the number of floating

:’ point operations required is as foliows:

"' Computation of U(x) orm?) g
2 Mutiplication Up) T, o(p?) T3
hy :.ﬁ‘

-
g

e
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Singular value decompostion op3J)

Formation of the product U(x)Q O(n+p)p2)
Thus, when the dimension p of the manifold is small in comparison with the space-
dimension n, as is typical in applications, then the principal cost is related to the
QR-factorization of DF(x)T and involves about (2 ¢3)n3 operations. This is indeed
analogous to the complexity of a standard continuation process.

For the practical mplementation & is certainly desirable to choose the basis malrix
T, of our reference coordinate space T in RM as simply as possble. In particular, & is
very advantageous to define T as a subspace spanned by p appropriate natural basis
vectorse!,_eNof AN, Then T, can be taken as a matrix with columns e with certain
distinct indices i=i}-, 1sil-sn, [=1,...p. For the choice of these indices, recall that for any x
of Mand given vector a € RMthe principal angle « e [0,1/2] between TMand
span{a} is defined by

cos(e) =max{u'a;ue T,M, [lull,=1}
Evidently, f a is one of the global basis vectors of RN, then
cos(ox) = [[Ux)Tellly, i=1,.m; (36)

that is. the Euclidean nom of the i-th row of U(x) is the cosine of the prigcipal angle
between the tangent space TyM and the i-th coordinate line span{e'} of R". Since the

Euclidean norm is invariant under orthogonal transformations, it is obvious that the
principal angle does not depend on the particular basis U(x) of TyM.
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This suggests the desired selection of T,,. We intialize our moving frame algorithm
atsome reference poink x* of M and compute a basis malrix U(x") of the tangent space
of M at this point. This allows for a straighiforward calculation of the principal direction
cosines 1 = cos{ey) of (3.6) which we order in descending order of size. Let i,-ip b
the indices of the p largest of these 1; (with ties broken,say, by lexicographic ordering),
then the corresponding naturai basis vectors of RN span our reference coordinate
space T and form the columns of the basis malrix T,,. Since U(x™) has rank p, none of
the selected coordinate directions can be orthogonal to the tangent space. Hence, as
required, X" is a non-singular point with respect to T, and the subset M, of Theorem 1
contains an open neighborhood of x* onM. Geomelrically the constructed subspace T
is close to the tangent space of M at x* in the sense of the above maximization of the
drrection cosines (3.6). Infact, our construction is analogous to the local coordinate
selection used in the continuation program PITCON (see [15] or [16]). Obviously, this
choice of T, also has the advantage that the computation of the malrix Uy, in step (1) of
the algorithm (3.3) simply becomes an extraction of p of the rows of U(x).

A frequently occurring case are manifolds with dimensionp = 2. Forthem we can

compute, up to signs, a direct representation of the orthogonal matrix Q of the algorthm
(3.3). In fact, suppose that

a b
U =
° J¢ d

= the malrtx instep (1) of (3.3). Then a straightforward calculation shows that

SRR 'y
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t=2(@+d¥s, oc=:(-c¥5, & =[(a+d)?+(p-<)2]"2

The signs are readily chosen by comparing the directions of the computed frame
with the directions of the natural basis yectors used in T,,. This keads also to a direct
proof of the theorem in this special case.

LY, R WY Y

T T
.

'

1B

C )

Uve

AR’

0
s
N &

)
aa

. |

P
P g

| [

a0 o o d




./.
s

4_A Triangulation Algorithm

The results of the previous section are now used to generate the desred
rranguiation on a subset of our manfold M. The basic idea s as follows: We introduce
a reference trianguiation on RP and use the bases produced by the moving frame
aigorthm to map segments of i onto the spaces x+TyM corresponding to appropriate
points x on M. Then the Gauss-Newton process (2.11) is apphed to “project” these

manquiations from x+T,M onto M.

The reference riangutation , of course, is any covening of RP by a locally finite
collection of p-smplices such that any two of these smplices intersect ether ina
common face or not atall. The lerature on this topic is large and we refer here only to
the discussion of various numencally efficient triangultations in [18]. Our algorithm does
not place any particular restrictions on the chokce of this trangulation except that we
should be quided by considerations of computational simplicity. Let I be the collection
of smplice< of this triangulation.

Most trianguiations used in smplicial continuation studies are generated by pivoting
rules. A simple such ruke is pivoting by reflection For any index je {1,2,.p} set |, =
1+1and | =1 withthe provisionthat j, =1 f)=pand . =p f)=1_ Then fora
givenp-smmplex o =[y°y ! yP] In AP, pivoting by reflection of the vertex y) is defined
as the replacement of o by the smmplex [y0, w1 yl*eybyl yi*1 WP Fo, s

arven reference smplex in RP then by repeated application of this procedure a

rianqulation of AP can be generated (see ¢ q [1))




o =
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w. A frequently used exampie s the so-called Kuhn trianquiation which is generated by 4
o repeated pivoting by refiection starting with the simplex
\. ~ -
LN =[U,e',e‘+e2,...,e1+ez+...+eP]. ad
WM
-3
o In the often occuring case p = 2, we can also use triangulations of R2 by equilateral
T riangles generated by prvoling by reflection beginning with the 2-smplex =
&
o oo=10,e!,056e1 +v3e9)] (4.1) =
Yy - _\
;E:-_f Let & denote a given vertex of the triangutation in AP and § > 0 a fixed steplenath. -
-r._i Then for any point x € M where a basis malrix U of TyM is known, the mapping '
—ff : _
EZ;:; AR 5 xsTM, An=x+8Unt), ne P (4.2)
o

, . "

328 ransfers Z onto x+TyM. As in Theorem 1, let Y(x) dencte the local convergence o
., 3‘-., domain in x+TyM of the Gauss-Newton process (2.11). Fn is a vertex of X for which

-
o An belongs to Y(x), then {2.11) can be used to map An into a pointy € M. The set

L]

o I x,U,8) of vertices of I that can be mapped onto M in this way shall be called the -

“patch’ comesponding to the information & x,U,6.

o

L .
- Arndealized version of our algorithr can noyy be formulated as follows:

: (1) Selecta reference vertex £ =% of T ; -
;3 (2) select a reference point x = x* of M ; .
55
5.";: P

-

s A

- ‘-. v - o .
R PR
N A A N e
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ﬁ (3) Intialize the moving frame algorthm at x* and letMg be the s
‘ subset where, by Theorem 2, this akgorthm applies: 288
(4) mark the vertex & as used:; 4.3) e
B (5) while x belongs to M, R
.. (Sa)mark ¢ as a “center”;
& (Sb) compute the frame U = U(x) by the moving frame algorithm, i
g (5¢) select all vertices of the pateh I'(¢ xU ) which have %
- not yet been marked “used”; ;;.‘. |
o (Sd) use (4.2) to map these vertices onto x+T,M and mark them “used” N
(3d) use the Gauss-Newton process to project the resulting points
from x+TyM onto M ; ‘
(Se) choose a “used” vertex ¢ of T not marked a “center” i
» and let x be s computed mage on M; ey
=
The points computed on M inherit the connectiviy pattern of the original simplices of
. I which inturn induces a simplicial approximation My of a segment of M in RN The __
algorthm is still “ideal” in nature since, in practice, the sets M,, and I'(¢ x,U,8) are not %,;
known explictly. Without this knowledge the computation may hak when the teration o
f in step (5d) fails to converge; that is, when we encounter a point in the affine space ‘
r: 2+TyM of one of the centers x which does not belong to the neighborhood Y(x)
2 specfied in Theorem 2 . A second possibillty for failure arises in the execution of the cuc
moving frame algorithm in step (Sb) whenithe selected center x does not belong to M, .31
. In order to make the algorithm practical, we replace the “ideal” patzhes I'¢¢ xU 8} in ..
step (5¢) by "standardized” patches T’ ((¢). The definition of these patches depends on -;
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the specific reference trangulation in RP. As an example, consider the earlier
mentioned triangutation on RZ consisting of equilateral triangles produced by pivoting
by reflection from the triangie (4.1). Then the standarized patch for the center point
{0,0) in Figure 1 is the hatched, star-shaped region and for any other vertex itis
obtained by obvious ransiation. With this standard patch the progress of the algorihm
s easily folllowed in Figure 1. There, at each vertex, the second of the two integers is a

8,23
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counter and the first one identifies the “center” £ that is used in mapping that vertex
onto M. Thus after the inttial vertex 0 , the nodes 7,...,12 become centers which serve to
map the nodes 13,...42 onto M. Then the process continues with nodes 17,18, 19, 23,
24, 28, 28, 33, 34, 38, 38,42 as centers. This is no longer shown in the figure, but, in
practice, we have always continued through this further stage. k resuks in the earlier
mentioned total of 114 riangles involying 19 centers and hence as many Jacobian

evaluations.

Once a standarized patch I o(€) is used in step (5¢), a sukable divergence check
has to be buikt into the Gauss-Newton process. ¥ in step (5d) this check is triggered,
then the corresponding vertex £ of 2 is flagged as unusable. Such unusable vertices
are excluded from the further computation. A simifar procedure may be followed when
in step (5b) the moving frame algorthm fails. However, inthe falter case i is often
advantageous to re-intialize the moving frame aigorithm at one of the successfully
computed points x on M. Of cowrse, then the computed basis (Xx) has to be used as

the reference matrix T,

The above provisions may resuk in triangulations that cover a somewhat rreguiar
domain on M. Fortunately, in practice, this does not occur as frequently as might be
expected, provided the steplength § is not chosen too large. Akernately, & is naturalto
consider a procedure which adapts § in cases of failures and hence which produces
rrequiar riangulations onM. Such a program is now being mplemented.




5. Numerical Experiments

Inthis Section we present resuls of some numerical experments wih the
ranguiation aigorthm. The method produces a weakh of numerical data which
cannot be reproduced in the limited space of this paper. Atthe same time tisa
challenqing problem to invent instructive graphical representations of man¥okis of
dmension largerthan 2. As a consequence, only some graphical results for
two-dimensional manifolds are shown here. k is hoped that other experiments with

higher dmensional manffolds can be presented elsewhere.

An Exotherm. _Reactlion: Asa frst example we consider a simple transport mode!
for an exothermic, first-order reaction-scheme discussed in [4] which, in
dmensionkess form, leads to a two-point boundary yalue problem

(DUY + Ko (- Uyexp(-A(1+uy ) =0, w0)=ul)=0. (51)

The dmensionsiess parameters p and A involve the constant concentration and
temperature on the outside of the system, anc for the caiculation we follow [4] and set
D=1, L=12and k,= 107 The standard finite diference approximationof (S.1)on a
unform mesh xj=1h . 1=01, ,n+1, h=(n+1)"" then produces a nonlinear equation
of the form

'2,_1 + le - X|+1 = h:ko{lu‘xl)e)(p(“)\[14'xl)-1) B '=1 ..,._,n, XO = Xn+1 = 0 (52)

For p=1there 1sa smple tuwning in A near A = 22 which was calkculated with the

continuation code PITCON and n=10 This point was then used to intialize the
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Tanquiabon akgorthm. Here -- as in the subsequent example -- the reference
rangulation in R< was generated by repeated pivoting by reflection from the

equifateral trrangie (4.4). The stepsize in the affine mapping (4.5) was § = 0.4. Fiqure 2
shows the results of this nangulation. More specifically, the intersection of the
computed simplicial approximation My with the (2, p, X.) -space ts shown, where x. s
the computed x-value at the center of the interval. The coordinate axes are shightly
rotated and one see clearly the starstaped pattern of the reference rangulation of
Figure 1 as tt was mapped onto the mantfold. The floor of the valley actually
represents a foldline as can be seen in Figure 3, where the same surface In(A, p, x.) -
space Is projected onto the (A, p) -parameter plane. k shows also that the location of
the turning point in A depends approximately linearty on p.

A Shallow Crcular Arch As the second exampie we consider a finite-element moge!

for the deformation of a thin, shallow, crcular arch which has been used as a test case
by many authors. & appears to go back to A.C Waker [19} and we employ here the
same formulation as in [13]. In particular, in a {r,©)-polar coordinate system wih the
vertical direction as the r-axis, the unioaded configuration of the arch ts represented by
the creutar segment {(r,8). r=10,-6,56<6,,8,=15% and, for pinned ends.
the dimensionless total potential energy and associated boundary condtions are gryen
by

%

| [ [ (w-u) + o (U ]

Q

R
o y - g_zp\l dO U @=We)=u(&)=0, @=1&

whers prmes denote dervatives with respect ta @ For the asymrmetrical load




pO)=(14)A, F-©,5€<0, and p(&)=(1+p)A, FOs &<,

= >0

involying the two parameters p and A, the load path for i = 0 has a bifurcation point
near A = 1.9. This point was computed with PITCON and used to initialize the
ranquiation aigorthm. The stepsize of the mapped triangles was § = 0.5. The results
are shown in Figure 4. More specifically, lel x. denote the (dimensionless) radial
deformation atthe center. then the figure shows the intersection of the manifold vrith
the (x..A,p)-space profected orthogonally onto the (A, p)-plane. The cusp - bifurcation is
Clearly visble and the saddle shape of the surface can be seen even befter inthe
shighty rotated Figure S.

The problem was also run with the load function

p(8) = A1-4(u-0)X6,) 1], F max(-6,, u-0256,) < @ <,
(@)= A1 +4(-0X0o) 1] € 1 < © < min(0,, u+0.256,),

considered already in|[3]. Inother words, the load is a piecewise-linear hat function
which hasthe value A at ® =y and is zero outside the interval centered at p of width
058,.

Fuaures b and 7 give results with this load obtained at two initialization points More
specifically, the computations for these figures were centered at the limit points with
respectto A whenuisfixedat p=0or p= 005 respectively Once againthese imit

points were computed with PITCON The foldiing inthe (p A)-plane has the shape

shown in Firjure 8 and Fxaures 6 anc 7 clearly show seaments of this foldline In
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i particutar, Figure 7 contains one of the points where the most dangerous load occurs,
namely atabowt p= 0166,

I}.."/

Fraure 2

ia NN

& X (‘( ."h-" e 'W’-.,'. o ':" “‘.'—l--{'-(‘;fﬂ"‘
Am}m NI AIIS NS R P XM PRI




Ay Wy
5

PR
o r P A
M)

ml:
t

-
e
Ve
.
.
Y
f d
n,
D, (
.
RS
!
o
‘- .
»
»
»
-
. »
.. -
. '
. ‘,'
.
» Pd

P
L "y
.. )
< -,
. .
L
<

alete

e
'f'tﬂ'n': y

)
v

]
4 'Ii

» -
[ .’j‘
K o4
: RS
[ 4 Y
X ‘.

[} el
) R
) .
“u
.

L) .- Y
; f

s “ K
Ca. Y.

Ciqure 3 N

1

T e T TS R S
TR - N \ BRPS

P e B R
AR, S L WYL VAT AL W Y




re s

X

e,

”f-f.f-f.f'f’/'-f. Y IR NP ST R EER LA R e ™ e ~aNa .
3 Ly g\‘ 3% % > IO P S ANy v Sl Y
RS hinILat ot ¥ '*" " 4 a' T J‘ ATe E - VG B .al‘ﬁ.l‘a‘.':.‘ \W,

Fraure 4

!l. |.§ é\! .

e
N3
WY,

-
:.-;a
<)
hyd
Y

. _&'r
RS
el

yl'l'l'l
. PR
.7 [
- a'a’a

SRS S SR R
L S ] NN
.' W, W Ak } 1)



i

o T,
¢

,
~tad
- |
- ]
LR,
L
v
"
"1
Al
r. bod
» L} n
. N » %
- X4
S .
b
f.‘:&
- » s
;:;'-
=
1 Y
el o
» ® -
[ l.
-, o
o N
e ¥
e [ 4
A8
S
" _
" -> i

{ A

d \::‘

AN

[~

s

1

\ \':"

a!

Figure S

Y

,-.‘ )

>

gy N e N NN PO T e T T T WY - R W ah G e T TR R T Tt T e TR e T ot T e T e e a Tt at aPRCAT  Cm ta
RO O340 TN, oy RN . N A A A I AN P W
AN R RS T h G e te e e e o o (- VIF S AP P )

lllllllllllll




,\Q

. R
CA A IR
“{hg&u&.ﬁ\..ﬂt -



»

X

A

Bt

"

LAY,

R .
.
R |

EN/ -

[
3 -
i
\’ -
N f:.
5
W
Cat -
S
H ‘ q
:
N B
TS
"-J,'\
R e,
A 3
»
-
s
o LY
] s
."_.1 )
. '«
“ | ‘ i
\ 1.-..
w.
ol -
”. S
), <. B
S
n
N3 -
LA
N
D ."'I -
“ad
e --‘
. < .
2 -
- - .‘. .
-" N
-".. .‘-s
e
-.' »
A =
" -
- l'}
b
o
A Y
+ 4 : .J‘.:
. =z
»
\ ‘.‘
‘NG

=

Figure 7

LA

1
i
Wy
B O !
fl ’
Y
A

LA

d'ﬁ\-f.:q\-'__v.--_..\-...4_-.<‘-‘.‘q_._._<..... . . L . v, o . -
‘ TR N P S I L U T AT A RN
¥ eIV A G YA R AR, VRN .'r_{lﬁ.k.‘.-f& Mo AN -‘n'.&i'niﬁ'.\t'ﬂiiﬂ‘n'.'-i‘) ARG MO

e Tt T ettt mmme et
AT TR AN N A T

W,
gLy T Lo L




ol

P

.

it \.c .| ‘." S

e e N
LYk,

x

AR

r

o
0
5-)-
t LV
6072 6o/2
Fiqure 8
.‘* “; -.' AT -f‘ f\_-f._.r,‘.r )




-

N .
47"

6. Outlook L i

The numerkal examples Indicate that the iangulation algorithm works very :
efficiently even around singuiarities. Thus -- as intended -t does indeed offer a new E ,
tool for deriving Information about the shape and features of the manifold. Of course. as )
b mentioned before, we are able to present here only some graphical information and £

none of the extensive numerical output of the algorithm. This output is available as

rl

S|

input to various post-processes for extracting further information. Several such

£ l"l’l

A

processes are now under development and will be described elsewhere in more o
detail. Here we present only a brief overview of some of the possiblities.

y 4 %s v S DM ¢

As noted earlier, linear interpolation between the vertices of the computed

A

triangulation defines a simplicial approximation Mg of the corresponding part of the
maniold M. The poins of M can bx used to compute further points of M. For example,
: we may project any such point onto M by applying the cofrector Reration (2.11).

) Alernately, we can augment the system (2.2) with p appropriately chosen equations Sl
! and then apply, say, a chord Newton method to calculate a corresponding pointon M. :
This approach is useful when points on M with specfic properties are desred. For
=Xample, we may be interested in certain target points where the parameters have
prescribed values. In that case, these target conditions become the augmenting

!

s

B A S P ]

equations and we may startthe terative process from a point on My where the
parameters have the specified values Augmenting equations are also essential when
we are interested in determining the specfic location of certain types of sinqularities.
For the computation of limit points a comparison of various such auamentations was RO
arvenn|13], and for higher order sinqularties the literature on suitable augmentations

15 farty extensive inour present setting, the "minimal™ augmentations discussed In s
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(11}, andthereafter in[10]), appear to be of particular interest.

For any given functional the computed data allow us to generate contour plots on
the intersection of the smplicial approximation My with various subspaces. For
instance, in some structural problem we might be interested in seeing lines, where
some stress component is constant, plotted in dependence of certain other varables
A special example of such a contowr pict involves the graphical representation of lines
of foldpoints. As the figures of the previous section already show, our riangulations
provide information for approximating segments of such foldlines. One approach for
detecting foldpoints is to monitor the orientation of the projection of the tangent basis
onto the parameter space. Fthere is a change in this orientation then we have passed
through a foldpoint, but the converse is not necessarily true; that is, not every foidpoint
can be detected this way. The orientation is characterized by the deteminant of the
projected basts in the parameter space. Thus, I we piot lines of constant determinant
values, then lines of zero determinant are approximations of the desired foldlines. Of
course, for this we need the tangent basis at each vertex of the trianqulation and that
increases the cost of the overall aigorithm. However, there appear to be other possible
techniques for approximating foldlines from data obtained by our trianguiation
algorthm. This will not be pursued here.

Eventhough these contour plots only provide lines of constant yalues on the
smplicial approximation My rather than on M tseff, they tend to offer already good
In2ight into the shape of the manifold. Of course, as discussed earlier, we can atways

call on various local commector methods to project these lines onto M itself.

S0 far we mentioned only the need for appropriate post-processing techniques
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for analyzing the cutput of our triangulation method. There is also considerable room
for mproving the aigorithm itsef. In particular, for large sparse problems the
QR-factorization may be computationally expensive. As noted earlier, there exist
results for computing sparse bases of the null space of a matrix (¢f 5], [6]). The rotation
requr= ' for the moving frame algorithm is likely to destroy this sparsity, and hence the
rotated basis shoukd not be stored but computed only as needed. in the case of low
dmensional manfolds, this is not very costly as long as the computation of the onginal
basis of the tangent space takes account of the sparsity structure of the Jacobian.
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uses these bases, together with a chord form of the Gauss-Newton process

as corrector, to compute the desired vertices. The Jacobian matrix of the
mapping is not required at all the vertices but only at the centers of certain
local "triangulation patches". Several numerical examples show that the

method is very efficient in computing triangulations, even around singularities
such as 1imit points and bifurcation points. This opens up new possibilities
for determining the form and special features of such solution manifolds.
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